We are introducing a multi-scale predictive model for video prediction here, whose design is inspired by the "Predictive Coding" theories and "Coarse to Fine" approach. As a predictive coding model, it is updated by a combination of bottom-up and top-down information flows, which is different from traditional bottom-up training style. Its advantage is to reduce the dependence on input information and improve its ability to predict and generate images. Importantly, we achieve with a multi-scale approach -- higher level neurons generate coarser predictions (lower resolution), while the lower level generate finer predictions (higher resolution). This is different from the traditional predictive coding framework in which higher level predict the activity of neurons in lower level. To improve the predictive ability, we integrate an encoder-decoder network in the LSTM architecture and share the final encoded high-level semantic information between different levels. Additionally, since the output of each network level is an RGB image, a smaller LSTM hidden state can be used to retain and update the only necessary hidden information, avoiding being mapped to an overly discrete and complex space. In this way, we can reduce the difficulty of prediction and the computational overhead. Finally, we further explore the training strategies, to address the instability in adversarial training and mismatch between training and testing in long-term prediction. Code is available at https://github.com/Ling-CF/MSPN.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Talking face generation aims at generating photo-realistic video portraits of a target person driven by input audio. Due to its nature of one-to-many mapping from the input audio to the output video (e.g., one speech content may have multiple feasible visual appearances), learning a deterministic mapping like previous works brings ambiguity during training, and thus causes inferior visual results. Although this one-to-many mapping could be alleviated in part by a two-stage framework (i.e., an audio-to-expression model followed by a neural-rendering model), it is still insufficient since the prediction is produced without enough information (e.g., emotions, wrinkles, etc.). In this paper, we propose MemFace to complement the missing information with an implicit memory and an explicit memory that follow the sense of the two stages respectively. More specifically, the implicit memory is employed in the audio-to-expression model to capture high-level semantics in the audio-expression shared space, while the explicit memory is employed in the neural-rendering model to help synthesize pixel-level details. Our experimental results show that our proposed MemFace surpasses all the state-of-the-art results across multiple scenarios consistently and significantly.
translated by 谷歌翻译
We propose an analysis in fair learning that preserves the utility of the data while reducing prediction disparities under the criteria of group sufficiency. We focus on the scenario where the data contains multiple or even many subgroups, each with limited number of samples. As a result, we present a principled method for learning a fair predictor for all subgroups via formulating it as a bilevel objective. Specifically, the subgroup specific predictors are learned in the lower-level through a small amount of data and the fair predictor. In the upper-level, the fair predictor is updated to be close to all subgroup specific predictors. We further prove that such a bilevel objective can effectively control the group sufficiency and generalization error. We evaluate the proposed framework on real-world datasets. Empirical evidence suggests the consistently improved fair predictions, as well as the comparable accuracy to the baselines.
translated by 谷歌翻译
虽然先前以语音为导向的说话面部生成方法在改善合成视频的视觉质量和唇部同步质量方面取得了重大进展,但它们对唇部运动的关注较少,从而极大地破坏了说话面部视频的真实性。是什么导致运动烦恼,以及如何减轻问题?在本文中,我们基于最先进的管道对运动抖动问题进行系统分析,该管道使用3D面表示桥接输入音频和输出视频,并通过一系列有效的设计来改善运动稳定性。我们发现,几个问题可能会导致综合说话的面部视频中的烦恼:1)输入3D脸部表示的烦恼; 2)训练推导不匹配; 3)视频帧之间缺乏依赖建模。因此,我们提出了三种有效的解决方案来解决此问题:1)我们提出了一个基于高斯的自适应平滑模块,以使3D面部表征平滑以消除输入中的抖动; 2)我们在训练中对神经渲染器的输入数据增加了增强的侵蚀,以模拟推理中的变形以减少不匹配; 3)我们开发了一个音频融合的变压器生成器,以模拟视频帧之间的依赖性。此外,考虑到没有现成的指标来测量说话面部视频中的运动抖动,我们设计了一个客观的度量标准(运动稳定性指数,MSI),可以通过计算方差加速度的倒数来量化运动抖动。广泛的实验结果表明,我们方法对运动稳定的面部视频生成的优越性,其质量比以前的系统更好。
translated by 谷歌翻译
受认知科学中知名的预测编码理论的启发,我们为视觉框架预测任务提出了一种新型的神经网络模型。在本文中,我们的主要工作是结合预测编码和深度学习体系结构的理论框架,为视觉框架预测设计有效的预测网络模型。该模型分别由一系列复发和卷积单元组成,分别形成自上而下和自下而上的流。它学会了以视觉序列预测未来的帧,网络中的每一层中的弯曲器可以从上到下进行本地预测。我们模型的主要创新是,该层上神经单位的更新频率随着网络级别的提高而降低,从时间维度的角度来看,模型中的导致模型看起来像金字塔,因此我们称其为金字塔预测性网络(PPNET)。特别是,这种类似金字塔的设计与预测性编码框架涉及的神经科学发现中的神经元活性一致。根据实验结果,该模型与现有作品显示出更好的紧凑性和可比的预测性能,这意味着较低的计算成本和较高的预测准确性。代码将在https://github.com/ling-cf/ppnet上找到。
translated by 谷歌翻译
在“知识图”(kgs)的表示领域中,超级关系的事实由主要三重和几个辅助属性描述组成,这被认为比基于三重的事实更全面,更具体。但是,由于代表实体之间的隶属关系的层次结构削弱,因此,单个视图中现有的超相关KG嵌入方法受到限制。为了打破这一限制,我们提出了一个双视性超相关kg(DH-kg)结构,该结构包含实体的超相关实例视图,以及对从实体到共同模型超相关的概念的超相关本体论视图和分层信息。在本文中,我们首先定义了DH-KG上的链接预测和实体键入任务,并根据医疗数据构建了两个DH-KG数据集,即从Wikidata和HTDM中提取的JW44K-6K。此外,我们根据Gran编码器,HGNN和联合学习提出了DH-KG嵌入模型DHGE。实验结果表明,DHGE在DH-KG上的表现优于基线模型。我们还提供了该技术在高血压药物领域中应用的示例。我们的模型和数据集公开可用。
translated by 谷歌翻译
二进制矩阵优化通常是在现实世界中出现的,例如多微晶网络结构设计问题(MGNSDP),即在某些约束下最小化电源线的总长度。为这些问题找到全球最佳解决方案面临着一个巨大的挑战,因为此类问题可能是大规模,稀疏和多模式。传统的线性编程是耗时的,无法解决非线性问题。为了解决这个问题,提出了一种新颖的可行性规则基于差异进化算法,称为LBMDE。具体来说,首先提出了一种通用启发式溶液初始化方法来生成高质量的解决方案。然后,引入了基于二进制的DE操作员以生产后代。为了处理约束,我们提出了改进的基于可行性规则的环境选择策略。通过一组基准问题来检查LBMDE的性能和搜索行为。
translated by 谷歌翻译
本文提出了一个改进金字塔变压器(复制器),以进行健壮的面部标志性检测。大多数面部地标探测器都专注于学习代表性图像特征。但是,这些基于CNN的功能表示不足以处理复杂的现实世界情景,因为忽略了地标的内部结构以及地标和环境之间的关系。在这项工作中,我们制定了面部标志性检测任务,作为沿金字塔记忆的提炼里程碑式的查询。具体而言,引入了金字塔变压器头(PTH),以在地标之间建立同源关系,以及地标和跨尺度环境之间的异源关系。此外,动态里程碑改进(DLR)模块旨在将地标回归分解为端到端的细化过程,其中动态聚合的查询被转换为残留坐标预测。对四个面部标志检测基准及其各种子集进行的广泛实验结果表明,我们的框架具有卓越的性能和较高的鲁棒性。
translated by 谷歌翻译
尽管图像变形金刚与计算机视觉任务中的卷积神经网络显示出竞争性结果,但缺乏诸如区域的电感偏见仍然在模型效率方面构成问题,尤其是对于嵌入式应用程序而言。在这项工作中,我们通过引入注意力面具以将空间位置纳入自我发挥作用来解决这个问题。局部依赖性有效地捕获了掩盖的注意力头,以及由未掩盖的注意力头部捕获的全球依赖性。随着蒙版注意力图像变压器 - MAIT,与CAIT相比,TOP -1的准确性提高了1.7%,与SWIN相比,吞吐量更少,吞吐量提高了1.5倍。使用注意力面罩编码局部性是模型的不可知论,因此它适用于整体,分层或其他新型变压器体系结构。
translated by 谷歌翻译